
Path Tracing Notes

Alberto Morcillo Sanz

June 4, 2024

1 Introduction

Brief notes of Monte Carlo path tracing, explaining the math behind it in order code it in any pro-
gramming language.

2 Rendering equation

The rendering equation is given by the following expression:

Lo (p, wo) = Le (p, wo) +

∫
Ω

fr (p, wi, wo)Li (p, wi) cos θdwi

Where cos θ = wi · n if wi and n are normalized.

• The function Lo measures the outgoing radiance of a point p with a direction wo.

• The function Le measures the emitted radiance of a point p with a direction wo.

• The function Li measures the incoming radiance to a point p from a direction wi.

• The function fr is known as BRDF (bidirectional reflective distribution function) that scales the
incoming radiance based on the surface’s material properties

• Ω is the hemisphere aligned with the normal vector n

Note that the product is the Hadamard product or element-wise product

2.1 Solving the rendering equation recursively

Each Li of a point is the Lo of other point as well. So the original equation may be written like:

Lo (p1, wo1) = Le (p1, wo1)+

∫
Ω

fr (p1, wi1 , wo1)

[
Le (p2, wo2) +

∫
Ω

fr (p2, wi2 , wo2) · · · (wi2 · n2) dwi2

]
(wi1 · n1) dwi1

As Le does not depend on wi we can take it out of the integral like:

Lo = Le+

∫
Ω

frLi ⇒ Lo = Le+

∫
Ω

frLe+

∫
Ω

fr

∫
Ω

frLi ⇒ Lo = Le+

∫
Ω

frLe+

∫
Ω

fr

∫
Ω

frLe+

∫
Ω

fr

∫
Ω

fr

∫
Ω

frLi···

We can simply write this sum of integrals in the form of Neumann Series:

Li = Le + TLe + T 2Le + T 3Le... =

∞∑
m=0

TmLe

1

3 Monte Carlo estimator

As the previous equation does not have an analytic solution, we have to find an approximation. One
common way to do it is using the Monte Carlo method, so the equation:

Lo (p, wo) = Le (p, wo) +

∫
Ω

fr (p, wi, wo)Li (p, wi) (wi · n) dwi

can be approximated using the following estimator:

L̂o (p, wo) = Le (p, wo) +
1

N

N∑
i=0

fr (p, wi, wo)Li (p, wi) (wi · n)
p (wi)

3.1 Probability density function

p (wi) is the probability density function of the ray output in the direction wi

As p (wi) is constant since all rays have the same probability of exiting in any direction from the
hemisphere (the solid angle goes from 0 to 2π):∫

Ω

p (wi) dwi =

∫ 2π

0

p (wi) dwi = 1 ⇒ p (wi)

∫ 2π

0

dwi = 1 ∴ p (wi) =
1

2π

So finally we have the following expression:

L̂o (p, wo) = Le (p, wo) +
2π

N

N∑
i=0

fr (p, wi, wo)Li (p, wi) (wi · n)

3.2 Casting rays

The way of solving the previous equation is casting a ray from the camera for each pixel. When the
ray intersects a surface it bounces with a random direction. The rougher the surface is, the new ray
direction will be more random. The smoother the surface is, the new ray direction will tend to be the
reflected direction (like a mirror). To do this we use a linear interpolation:

lerp(u, v, t) = u+ t(v − u) where u, v ∈ R3

Keep in mind that the reflect function is defined as:

r(ωo, n) = ωo − n(2n · ωo)

// Generate diffuseDir (random direction: x,y,z between 0 and 1)

Vector3 diffuseDir(

normal.x + (2 * static_cast <float >(rand()) / RAND_MAX - 1),

normal.y + (2 * static_cast <float >(rand()) / RAND_MAX - 1),

normal.z + (2 * static_cast <float >(rand()) / RAND_MAX - 1)

);

// Generate specularDir

Vector3 specularDir = reflect(wo, normal);

// Interpolate between diffuseDir and specularDir depending on the roughness

Vector3 wi = lerp(diffuseDir , specularDir , (1.0f - material.roughness));

// Flip wi if it is on the opposite side of the normal

if (wi.dot(normal) < 0.0f)

wi = wi * -1.0f;

Line newRay(nearestIntersection , wi);

2

wi · n < 0 means that the direction wi is in the sphere but not in the hemisphere so we need to
take the opposite direction or calculate a new one.

We can create new rays from the intersection point (N samples) in order to generate more paths
instead of bouncing only one ray. So for each bounce we cast N new rays. This is the key of path
tracing.

Figure 1: incoming and outgoing rays

4 BRDF (bidirectional reflective distribution function)

The bidirectional reflective distribution function is a function that defines how light is reflected at an
opaque surface. Physically realistic BRDFs have additional properties:

• Positivity: fr (p, wi, wo) ≥ 0

• Obeying Helmholtz reciprocity: fr (p, wi, wo) = fr (p, wo, wi)

• Conserving energy: ∀ωi

∫
Ω
frdwo ≤ 1 the outgoing energy is never greater than the incoming

energy except if the material emits light

4.1 BRDF definition

In phisically based rendering, fr is a BRDF which is usually a vector function which returns a color
although in some cases it can be a scalar function which scales the incoming light. There are different
BRDF, even you can model your own one. In this case, we are going to use the Cook-Torrance BRDF,
which is one of the most used ones.

4.2 Cook-Torrance

It simulates how light behaves using two distinct approaches, distinguishing between diffuse reflection
and specular reflection. The concept revolves around the simulated material reflecting a specific quan-
tity of light in various directions (Lambert) and another portion in a specular manner, akin to a mirror.
Consequently, the Cook-Torrance BRDF doesn’t entirely substitute the previous model. Instead, we
can precisely define the extent of radiance diffused and the amount reflected in a specular fashion,
tailoring the simulation to the characteristics of the material in question. Thus the Cook-Torrance
BRDF is defined as:

fr = kdflambert + ksfcook−torrance

flambert is the refracted light (diffuse; light penetrating and exiting the material) and fcook−torrance

is the reflected light (specular).
kd and ks are the ratios or the amount of diffuse and specular light. Due to energy conservation
kd + ks ≤ 1

Vector3 kS = fresnelSchlick(max(halfwayVector.dot(wo), 0.0f), specular);

Vector3 kD = Vector3 (1.0f, 1.0f, 1.0f) - kS;

// Multiply kD by the inverse metalness such that only non -metals

// have diffuse lighting , or a linear blend if partly metal (pure metals

// have no diffuse light).

kD *= (1.0f - material.metallic);

3

4.2.1 Fresnel approximation and energy ratios

The Fresnel equation describes the ratio of light that gets reflected over the light that gets refracted,
which varies over the angle we’re looking at a surface.
We can approximate this equation using the Fresnel-Schlick approximation:

FSchlick (h, v, F0) = F0 + (1− F0) [1− (h · v)]5

As cosθ = h · v = h · ωo we can also define the Fresnel-Schlick approximation as:

FSchlick (h, cosθ) = F0 + (1− F0) [1− cosθ]
5

F0 represents the base reflectivity of the surface, which we calculate using the indices of refraction:

F0 =

(
η1 − η2
η1 + η2

)2

Then, the kd and ks energy ratios can be defined as:

ks = FSchlick(h,wo, F0), ks ∈ R3

kd = 1− ks, kd ∈ R3

Where h is the halfway vector, v is the direction of the viewer and F0 is the surface’s response at
normal incidence at a 0 degree angle as if looking directly onto the surface.

h = l+v
||l+v|| . In this case h = wi+wo

||wi+wo||

Fresnel equation table
Some of the more common values listed below as taken from Naty Hoffman’s course notes:

Material F0 (Linear) F0 (sRGB)
Water (0.02, 0.02, 0.02) (0.15, 0.15, 0.15)

Plastic / Glass (Low) (0.03, 0.03, 0.03) (0.21, 0.21, 0.21)
Plastic High (0.05, 0.05, 0.05) (0.24, 0.24, 0.24)

Glass (high) / Ruby (0.08, 0.08, 0.08) (0.31, 0.31, 0.31)
Diamond (0.17, 0.17, 0.17) (0.45, 0.45, 0.45)

Iron (0.56, 0.57, 0.58) (0.77, 0.78, 0.78)
Copper (0.95, 0.64, 0.54) (0.98, 0.82, 0.76)
Gold (1.00, 0.71, 0.29) (1.00, 0.86, 0.57)

Aluminium (0.91, 0.92, 0.92) (0.96, 0.96, 0.97)
Silver (0.95, 0.93, 0.88) (0.98, 0.97, 0.95)

4.2.2 Diffuse light

Diffuse light is the refracted light. Light penetrating and exiting the material. It is basically the color
of the material. (The division by π is a convention that helps normalize the diffuse reflectance in
the Lambertian model. It ensures that the amount of reflected light is consistent with the spherical
distribution of incident light, taking into account the average fraction of light contributing to diffuse
reflection on a surface).

flambert =
c
π where c is the albedo or surface color.

4

4.2.3 Specular light

Specular light is the reflected light. Metal materials does not have diffuse lighting, only specular. So
the more metal a material is, the reflected color tends to be similar to the incoming light, whereas the
more plastic (dia-electric) it is, the reflected color tends to be the albedo color.

fcook−torrance =
DFG

4 (ωo · n) (ωi · n)

D is the normal distribution function, F is the Fresnel equation and G is the geometry function.

Normal distribution function
The normal distribution function D statistically approximates the relative surface area of microfacets
exactly aligned to the (halfway) vector h according to the roughness of the matrial α. We’ll be using
the Trowbridge-Reitz GGX:

D(n, h, α) =
α2

π
[
(n · h)2 (α2 − 1) + 1

]2
Geometry function
The geometry function statistically approximates the relative surface area where its micro surface-
details overshadow each other, causing light rays to be occluded.

G(n, ωo, k) =
n · ωo

(n · ωo) (1− k) + k

Where k is a remapping of α based on whether we’re using the geometry function for either direct

lighting or IBL lighting. kdirect =
(α+1)2

8 or kIBL = α2

2 .

To effectively approximate the geometry we need to take account of both the view direction (ge-
ometry obstruction) and the light direction vector (geometry shadowing). We can take both into
account using Smith’s method:

G(n, ωo, ωi, k) = G(n, ωo, k)G(n, ωi, k)

4.3 Energy absorption

Depending on the material with which the ray intersects, it absorbs more or less energy. So there is a
new parameter for each material called absorption that will allow us to scale the radiance.

Vector3 kS = fresnelSchlick(max(halfwayVector.dot(wo), 0.0f), specular);

Vector3 kD = Vector3 (1.0f, 1.0f, 1.0f) - kS;

kD *= (1.0f - material.metallic);

float energyAbsorption = 1.0f - material.absorption

Vector3 fr = (kD.elementWiseProduct(diffuse) + specular) * energyAbsorption

5 Final equation

With every component of the Cook-Torrance BRDF described, we can include the physically based
BRDF into the now final reflectance equation. Substituting fr = kdflambert + ksfcook−torrance we get:

Lo (p, wo) = Le (p, wo) +

∫
Ω

[
kd

c

π
+ ks

DFG

4 (ωo · n) (ωi · n)

]
Li (p, wi) (wi · n)dwi

This equation is not fully mathematically correct however. You may remember that the Fresnel term
F represents the ratio of light that gets reflected on a surface. This is effectively our ratio ks, meaning
the specular (BRDF) part of the reflectance equation implicitly contains the reflectance ratio ks. Given
this, our final final reflectance equation becomes:

5

Lo (p, wo) = Le (p, wo) +

∫
Ω

[
kd

c

π
+

DFG

4 (ωo · n) (ωi · n)

]
Li (p, wi) (wi · n)dwi

Solving the previous equation using Monte Carlo and the Cook Torrance BRDF we get the following
estimator:

L̂o (p, wo) = Le (p, wo) +
2π

N

N∑
i=0

[
kd

c

π
+

DFG

4 (ωo · n) (ωi · n)

]
Li (p, wi) (wi · n)

6 Algorithm overview

• For each pixel throw a ray from the camera.

• If it intersects nothing, Lo = (0, 0, 0) or Lo = sky color

• If it intersects with an object. Solve the rendering equation using the Monte Carlo estimator.
For each intersection, throw N rays (their direction depend on the roughness of the material
intersected). And for each ray, solve the rendering equation. Keep in mind that Lt+1

o = Lt
i. It is

a recursive problem that iterates a number of bounces.

• The recursive equation would look like this (It is the same as the recursive integral equation
defined in page 1, but now using Monte Carlo in order to solve those integrals):

L̂o1 = Le1+
2π

N

N∑
i=0

fr1Li1 (wi1 · n1) = Le1+
2π

N

N∑
i=0

fr1

(
Le2 +

2π

N

N∑
i=0

fr2Li2 (wi2 · n2)

)
(wi1 · n1) =

= Le1 +
2π

N

N∑
i=0

fr1

[
Le2 +

2π

N

N∑
i=0

fr2

(
Le3 +

2π

N

N∑
i=0

fr3 · · · (wi3 · n3)

)
(wi2 · n2)

]
(wi1 · n1)

7 Direct and indirect lighting approach

There are points in the scene that are directly illuminated, that is, there is no object between the light
source and the point. So we know with certainty, that point will be illuminated by that light source.
However, using pure path tracing implies that some rays with random directions may not reach the
light source, obtaining noisy results.
In order to solve this, it is possible to compute the direct and indirect lighting and combine them
together (as that sum is nothing but the refracted and reflected light).

Ldl (p, wo) =

∫
Ω

fr (p, wi, wo)LDi(wi · n)dwi

Lil (p, wo) =

∫
Ω

fr (p, wi, wo)LIi(wi · n)dwi

Lo (p, wo) = Le (p, wo) + Ldl (p, wo) + Lil (p, wo)

• Direct lighting: throw a ray from the point to each light source in the scene (for example,
directional lights). Consider the light source if the ray DOES NOT intersect with any other
object in the scene, that is, that the point is directly illuminated by that light source. Thus, each
LDi is nothing but each light source that contributes directly to the illumination of the point.

• Indirect lighting: the rest of reflected/refracted light comes from other objects of the scene. In
order to compute the indirect lighting just solve recursively the rendering equation (throwing

6

rays, more or less randomly depending on the roughness of the material) as we do in pure path
tracing:

LIi (p, wo) = Loi (pi, woi) = Lei (pi, woi) +

∫
Ωi

fr (pi, wj , woi)Lj(wj · n)dwj , for each ray i

Remember that it is also possible to split
∫
Ωi

fr (pi, wj , woi)Lj(wj ·n)dwj into direct and indirect
lighting:

∫
Ωi

fr (pi, wj , woi)Lj(wj ·n)dwj =

∫
Ωi

fr (pi, wj , woi)LDj(wj ·n)dwj+

∫
Ωi

fr (pi, wj , woi)LIj(wj ·n)dwj

• Monte Carlo estimator: use the Monte Carlo estimator in order to approximate the integrals:∫
Ωi

fr (pi, wj , woi)Lj(wj · n)dwj ≈
2π

N

N∑
i=0

fr (pi, wj , woi)Ljwjn

Where N is the number of samples (rays).

8 Conclusions

Monte Carlo path tracing is noisy. Using many samples and bounces will make the image look smoother
but it will take much computational time.

A good choice would be using the direct and indirect lighting approach, even if it is not as realis-
tic as the pure path tracing approach, it is less noisy and has a better performance (it can be rendered
in real time).
Consider bidirectional path tracing in order to get better results. Some times, depending on the en-
vironment, reaching a light is quite difficult, so that all the scene would be much darker (or even
completely black) than it should be. So one way to solve this is not only throwing rays from the
camera, but also from the light source and joining them in the same path.
Take a look at MLT (Metropolis Light Transport) which significantly improves the results.

Another good choice would be to denoise the image after generating it, this way there is no need
on generating that many rays. This can be achieved by using any existing denoising AI or smoothing
filters.

9 Result

7

Figure 2: Direct and indirect lighting

8

	Introduction
	Rendering equation
	Solving the rendering equation recursively

	Monte Carlo estimator
	Probability density function
	Casting rays

	BRDF (bidirectional reflective distribution function)
	BRDF definition
	Cook-Torrance
	Fresnel approximation and energy ratios
	Diffuse light
	Specular light

	Energy absorption

	Final equation
	Algorithm overview
	Direct and indirect lighting approach
	Conclusions
	Result

